GANDHI ACADEMY OF TECHNOLOGY AND ENGINEERING Department of Electrical Engineering

Lesson Plan

Subject: ENERGY CONVERSION-II				
Discipline: Electrical Engineering		Name of the Faculty: Er. Mahesh Kumar Mishra		
Course Code:	TH-2	Semester:	5 th	
Total Periods:	60	Examination:	2022(Winter)	
Theory Periods:	4P/W	Class Test:	20	
Maximum Marks:	100	End Semester Examination:	80	

Week Periods in week		Theory Topics	
	1st	ALTERNATOR: Types of alternator and their constructional features.	
1st	2 nd	Basic working principle of alternator and the relation between speed and frequency	
	3rd	Terminology in armature winding and expressions for winding factors(Pitch factor, Distribution factor).	
	4 th	Explain harmonics, its causes and impact on winding factor.	
	1 st	E.M.F equation of alternator. (Solve numerical problems).	
2nd	2 _{nd}	Explain Armature reaction and its effect on emf at different power factor of load.	
	3rd	Explain Armature reaction and its effect on emf at different power factor ofload.	
	4th	The vector diagram of loaded alternator. (Solve numerical problems)	
3rd	1st	Testing of alternator (Solve numerical problems)Open circuit test.	
	2 nd	Short circuit test	
	3rd	Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems)	
	4th	(Solve numerical problems)	
	1 _{st}	Parallel operation of alternator using synchro-scope and dark & brightlamp method.	
4th	2 _{nd}	Explain distribution of load by parallel connected alternators	
	3rd	SYNCHRONOUS MOTOR: Constructional feature of Synchronous Motor.	
	4th	Principles of operation, concept of load angleDerive torque, power developed.	
5th	1 _{st}	Effect of varying load with constant excitation.	
	2 _{nd}	Effect of varying excitation with constant load.	
	3 _{rd}	Power angle characteristics of cylindrical rotor motor.	
	4 th	Explain effect of excitation on Armature current and power factor.	
	1 _{st}	Hunting in Synchronous Motor. Function of Damper Bars in synchronous motor and generator.	
6th	2 _{nd}	Describe method of starting of Synchronous motor. State application of synchronous motor.	
	3 rd	COMMUTATOR MOTORS: Construction, working principle,	
	4 th	Running characteristic and application of single phase series motor.	

	1st	Construction, working principle and application of Universal motors.		
7th	2nd	Working principle of Repulsion start Motor,		
	3rd	Repulsion start Induction run motor,		
	4th	Repulsion Induction motor.		
	1st	SPECIAL ELECTRICAL MACHINE:		
	Ond	Principle of Stepper motor.		
8th	2nd	Classification of Stepper motor.		
	3rd	Principle of variable reluctant stepper motor		
	4th	Principle of Permanent magnet stepper motor		
	1st	Principle of hybrid stepper motor. Applications of Stepper motor.		
	2nd	THREE PHASE TRANSFORMERS: Explain Grouping of winding, Advantages.		
9th	3rd	Explain parallel operation of the three phase transformers.		
	4th	Explain changer (On/Off load tap changing) tap		
	1st	Explain changer (On/Off load tap changing) tap		
	2nd	Maintenance Schedule of Power Transformers		
	3rd	SINGLE PHASE INDUCTION MOTOR		
10th		Explain Ferrari's principle		
	4th	Explain double revolving field theory and Cross-field theory to analyzestarting torque of 1-phase induction motor.		
	1st	Explain Working principle, Torque speed characteristics, performance		
		characteristics and application of following single phase motors.		
	O d	Split phase motor.		
11th	2nd	Capacitor Start motor.		
	3rd	Capacitor start, capacitor run motor.		
	4th	Permanent capacitor type motor.		
	1st	Shaded pole motor		
	2nd	Explain the method to change the direction of rotation of abovemotors.		
12th	3rd	THREE PHASE INDUCTION MOTOR:		
	441-	Production of rotating magnetic field.		
	4th	Constructional feature of Squirrel cage and Slip ring induction motors.		
	1st	Working principles of operation of 3-phase Induction motor.		
	2nd 3rd	Define slip speed, slip and establish the relation of slip with rotorquantities.		
13th		Derive expression for torque during starting and running conditions andderive conditions for maximum torque. (solve numerical problems)		
'0	4th	Torque-slip characteristics.		
	1st	Derive relation between full load torque and starting torque etc. (solvenumerical problems)		
	2nd	Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss.		
14th	3rd	solve numerical problems		
	4th	Methods of starting and different types of starters used for three phaseInduction motor		
	1st	Explain speed control by Voltage Control, Rotor resistance control, Polechanging, frequency control methods.		
	2nd	Plugging as applicable to three phase induction motor.		
4545	3rd	Describe different types of motor enclosures.		
15th	4th	Explain principle of Induction Generator and state its applications.		